A Latent Variable Model for Two-Dimensional Canonical Correlation Analysis and its Variational Inference

نویسندگان

  • Mehran Safayani
  • Saeid Momenzadeh
چکیده

Describing the dimension reduction (DR) techniques by means of probabilistic models has recently been given special attention. Probabilistic models, in addition to a better interpretability of the DR methods, provide a framework for further extensions of such algorithms. One of the new approaches to the probabilistic DR methods is to preserving the internal structure of data. It is meant that it is not necessary that the data first be converted from the matrix or tensor format to the vector format in the process of dimensionality reduction. In this paper, a latent variable model for matrix-variate data for canonical correlation analysis (CCA) is proposed. Since in general there is not any analytical maximum likelihood solution for this model, we present two approaches for learning the parameters. The proposed methods are evaluated using the synthetic data in terms of convergence and quality of mappings. Also, real data set is employed for assessing the proposed methods with several probabilistic and none-probabilistic CCA based approaches. The results confirm the superiority of the proposed methods with respect to the competing algorithms. Moreover, this model can be considered as a framework for further extensions. Index Terms Canonical Correlation Analysis, Probabilistic dimension reduction, Matrix-variate distribution, Latent variable model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Variational Canonical Correlation Analysis

We present deep variational canonical correlation analysis (VCCA), a deep multiview learning model that extends the latent variable model interpretation of linear CCA (Bach and Jordan, 2005) to nonlinear observation models parameterized by deep neural networks (DNNs). Computing the marginal data likelihood, as well as inference of the latent variables, are intractable under this model. We deriv...

متن کامل

Reduced rank regression in Bayesian FDA

In functional data analysis (FDA) it is of interest to generalize techniques of multivariate analysis like canonical correlation analysis or regression to functions which are often observed with noise. In the proposed Bayesian approach to FDA two tools are combined: (i) a special Demmler-Reinsch like basis of interpolation splines to represent functions parsimoniously and ‡exibly; (ii) latent v...

متن کامل

Acoustic Feature Learning via Deep Variational Canonical Correlation Analysis

We study the problem of acoustic feature learning in the setting where we have access to another (non-acoustic) modality for feature learning but not at test time. We use deep variational canonical correlation analysis (VCCA), a recently proposed deep generative method for multi-view representation learning. We also extend VCCA with improved latent variable priors and with adversarial learning....

متن کامل

Applying Variable Deletion Strategies in Bankruptcy Studies to Capture Common Information and Increase Their Reality

In financial distress studies selection of variable is commonly basedon the success of variables in variable sets employed in earlierbankruptcy studies, suggestions in the literature or an accompanyingdata reduction in a large set of variables. If seemingly different variablesets exhibit a strong relationship then heterogeneous variable setscapture common information. Canonical correlation anal...

متن کامل

Online but Accurate Inference for Latent Variable Models with Local Gibbs Sampling

We study parameter inference in large-scale latent variable models. We first propose an unified treatment of online inference for latent variable models from a non-canonical exponential family, and draw explicit links between several previously proposed frequentist or Bayesian methods. We then propose a novel inference method for the frequentist estimation of parameters, that adapts MCMC method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1708.01519  شماره 

صفحات  -

تاریخ انتشار 2017